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A b s t r a c t  

A comparison of the two methods available for the 
calculation of exact values of pseudorotation para- 
meters P, r,,, i.e. the Fourier-series (FS) method [Rao, 
Westhof & Sundaralingam (1981). Acta Cryst. A37, 
421-425] and the least-squares (LS) method [Jask61ski 
(1983). J. Chem. Educ. 60, 980-981] reveals that they 
yield identical values for ~'m and P. The variances 
o'2(z,,) and o'2(P) calculated by these methods are, 
however, different since they have different interpre- 
tations. 

The concept of pseudorotation introduced by Kil- 
patrick, Pitzer & Spitzer (1947) and applied to five- 
membered rings (Geise, Altona & Romers, 1967; 
Altona, Geise & Romers, 1968) has been widely used 
for the description of the conformation of five- 
membered rings and became particularly popular for 
the description of the ribose pucker in nucleosides 
and nucleotides when Altona & Sundaralingam 
(1972) extended it to furanose systems. For several 
years, however, its practical applications suffered 
from some inexactitude connected with the possibility 
of calculating several slightly different rm values for 
the same ring (Rao, Westhof & Sundaralingam, 1981 ; 
hereafter RWS). To overcome this shortcoming, RWS 
proposed an ingenious procedure (hereafter FS) in 
which the five endocyclic torsion angles ( 0 , , . . . ,  05) 
are represented by a second-order Fourier series. In 
an independent attempt to calculate exact values of 
r,,, and P the present author used the (nonlinear) 
method of least squares (LS) to fit z,, and P to the 
five observations 0i (Jask61ski, 1983). The final for- 
mulae for calculating the improvements Az,, and AP 
in the LS procedure with unit weights (i.e. in the most 
common ease when the observed endocyclic torsion 
angles 0~ have similar e.s.d.'s) are the following: 

5 

Ar,,=(~) Y. O i c o s ( P + 2 a i ) - r . ,  
i=1  

and 

(1) 

__5 
AP = _(2) 1 ).~ O, sin ( P + 2a,), (2) 

'/'m i=1 
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where 

oti = 2rr( i - 1). (3) 

The two methods (FS and LS) can be shown to 
yield identical final values of rm and P. The para- 
meters from the LS approach are considered final 
when the LS process has converged, i.e. when 

Arm = 0 (4) 

and 

AP=0.  (5) 

From (1) and (4) we get 

5 

z,, = (2) E 0, cos (P + 2a,) (6) 
i=1  

and from (2) and (5) 

5 

)-'. O, sin (P + 2a,) = 0. (7) 
i=1  

We note that (6) and (7) can be used directly to 
calculate ~-,, and P in the LS method without the 
necessity of running several least-squares cycles. 
Equation (7) can be readily transformed to give 

5 

Oi sin 2ai 
i=1 

tan P = - 5 , ( 8 )  

Y~ 0i cos 2ai 
i=1 

which is identical with (11) of RWS expressing P in 
the FS method. 

To show the identity of the r,,, values obtained from 
both methods, we first multiply (8) and (9) of RWS 
by cos P and sin P, respectively, and add them 
together to obtain 

(b( r,,, = cos P )-'. 0~ cos 2a~ 
i = l  

- sin P ~ 0i sin 2ai , (9) 
i=1 

which readily transforms to (6). 
The equivalence of the two methods is illustrated 

in Table 1, which presents the pseudorotation 
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Table 1. Comparison of Zm, P and their standard deviations calculated by the FS and LS methods 

FS m e t h o d  LS m e t h o d  

tr(0,)1" P(crP)§ "Tm(Gr'rm) § P(crP) Zm(tm'm) 
E n t r y  R e f e r e n c e *  (°) Ao¢ A l ~ (°) (°) (°) (0) R ¶ ( % )  

i (b) 0.4 0.16 0-67 159.0 (4) 39-7 (2) 159.0 (6) 39-7 (4) 1.62 
ii (d) 0.9-1.0 0.21 1.02 163.3 (9) 38-3 (6) 163.3 (9) 38.3 (6) 2.90 

iii ( f ) ( l )  5 0.33 1.48 147 (4) 43 (3) 147 (1) 43.1 (9) 3.52 
iv (h)(l) 0.6 -0.01 0-08 27 (5) 3-9 (4) 26.7 (7) 3.90 (5) 2.06 
v (h)(3) 0.7 0.01 0.06 75 (1) 25-4(5) 74.95 (8) 25.43 (4) 0.24 

vi (i) 0.3 0-10 0.92 132.8(2) 42-1 (2) 132.8(7) 42.1 (5) 2.13 
vii** 0.3 2.10 4.84 138.1 (2) 42.7 (2) 138 (4) 43 (3) 12.3 

viiif1" 0.03 0.01 0-09 132.8 (2) 4-21 (2) 132.8 (7) 4.21 (5) 2.13 
ix~: 0.3 0.00 0.41 131 (2) 4.1 (2) 131 (3) 4.1 (2) 10.2 

* Reference in Table 1 of  the paper by RWS: (b) Emerson & Sundaralingham (1980); (d) Swaminathan & Sundaralingam (1980); ( f )  Hogle, Sundaralingam 
& Lin (1980), (1) first line; (h) Sprang, Rohrer & Sundaralingam (1978), (I) first line, (3) third line; (i) Smith, Chwang & Sundaralingam (1980). 

t Average tr(0~) redetermined by us from the original positional parameters and their e.s.d.'s using the method of Shmueli (1974). 
~t See equation (1) of RWS. 
§ Recalculated by us from the redetermined 0t's and o'(0i)'s (see footnote t). The standard deviations have been recalculated using equations (13) and (14). 
$ Conventional R factor, R = 100 ~[0obs-- 0.,ol/Yl0obsl. 
** 0~ and tr(0~) same as in (vi) except for 0i which has been artificially biase by 100:01 (vii)= 01 (vi)+ 10 °. 
"tt 0i and tr(0~) taken from (vi) and divided by 10:01 (viii)= 0t (vi)/10, tr[0~ (viii)] = tr[0~ (vi)]/10; the ribofuranose ring (viii) is thus 'ten times flatter', 

and its torsion angles are ten times more precise than in the case of (vi). 
~t~t The values of  0~ (ix) have been generated by dividing the corresponding 0~ (vi)'s by a factor of ten and introducing random errors in the decimal 

place corresponding to cr[0i (vi)]: 0i (ix)= 0~ (vi)/10 + r x cr[0~ (vi)], where r is a random number from (0,1); tr[0~ (ix)] = o'[0~ (vi)]. 

parameters calculated by the FS and LS methods for 
several sample structures used by RWS and for three 
extra artificial ribofuranose rings (entries vii, viii, ix). 

Another advantage of the two methods is the possi- 
bility of estimating the variances in the derived 
pseudorotation parameters. However, the variances 
have quite different interpretations in these two 
approaches. In the LS method the variances are 
obtained by the inversion of the least-squares matrix 
and for the simplified practical case when o-(0i)= 
constant (unit weights in the least-squares equations), 
they are expressed (in rads) by 

O-2s ( ' r , . )  = ( ~ ) k  2 (10) 

1 k2 (11)  cr2(p) = (2) ---T 

(Jaskrlski, 1983). The factor k corresponds to the well 
known goodness of fit and is calculated by 

5 
k 2 ~ (Oobs - -  2 = 0¢a~¢),/3. (12) 

i= l  

Thus, the variances from the LS method provide 
a measure of how well the observed quantities (0i) 
fit the pseudorotation model of a puckered five- 
membered ring. 

In the FS formalism the variances o-2s(Z,.) and 
cr2s(p) are obtained from the variances in the ob- 
served torsion angles o-2(0~) by the application of the 
error-propagation law. They provide therefore a 
measure of how reliable the derived values (Zm, P) 
are. It should be pointed out here that the formulae 
for O-2FS(Z,, ) and o-2s(p) given by RWS [(15) and (16) 
of RWS] are incorrect, since they treat A and B [see 
(8) and (9) of RWS] as independent variables. Below 
are given the correct expressions for o-2s(Z,.) and 

O-2Fs(P ) in the FS formalism with no correlation 
between individual 0~'s 

o-~(~-,,,) = (A2O-2A +B2O-2B - C)  (13) 

(ly 
O'~s(P)= ~ (A20"2B + B20"2A + C), (14) 

where 
5 

C=2(2)2AB ~, o-2(O,)cos2c~,sin2a,. (15) 
i=I  

For practical applications with o-(0i)=constant= 
or(0), the correction term C is 0 and the formulae 
(15) and (16) proposed by RWS become valid. In such 
a case, however, they can be further simplified to give 

O-2FS(r,.) = (2)O'2(0) (16) 

1 2 

1 2 

Sample calculations revealed that for practical pur- 
poses the correction term C can be neglected unless 
the individual o'(0i)'s show significant scatter. 

We note here the similarity between (16), (17) and 
(10), (11). Their forms are identical but the true 
discrepancies between the observed and calculated 
quantities in (10) and (11) are in (16) and (17) replaced 
by the estimated variances 0-2(0) of the observations. 
It seems reasonable to calculate O-FS2 ,S and O-LS2 ,S for 
each determination of the pseudorotation parameters 
and to use the bigger ones as the variances in Zm 
and P. 
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Table 1 presents a compilation of the standard 
deviations calculated using the two methods. We 
decided to redetermine the values reported by RWS 
since we found some inconsistencies in their original 
paper [for instance, the ratio tr(rm)/o'(P) for entry v 
was 1.8 r,,, (rad) while it should be close to 1.0 Zm 
(rad)]. Since individual tr(0i)'s are not available in 
the original references, we had to calculate them also. 
For the calculations we used the original positional 
parameters and their e.s.d.'s and the method of 
Shmueli (1974). From a comparison of the standard 
deviations calculated with the two methods, three 
cases can be distinguished (Table 1): (i) O'Fs'S and 
trLs'S are roughly the same (entry ii); (ii) low-precision 
observations fit the model very well (entry v); and 
(iii) precise observations give very poor fit (entry vii). 

2 , As discussed above, the O'LS S are a measure of the 
fit between the real and calculated worlds. Another 
measure of this agreement in the LS formalism is the 
conventional R factor. Entries vii and ix of Table ! 
show that R is sensitive to both systematic and ran- 
dom errors. As pointed out by RWS, the departure 
of the Ao and A~ coefficients of their Fourier series 
[see (1) of RWS] from 0 furnishes the FS method with 
a measure of the deviation from the ideal pseudorota- 
tion description. Table 1 reports the Ao and A~ values 
for each entry. Although it is possible to trace a very 
poor fit by the large values of [,40 and A I (entry vii), 

it is in general not obvious how to establish the 
discrepancy between the observations and the model 
from individual Ia0l and Ia,I values, and how to 
compare the deviations for different systems. It seems 
that the R factor provides a more convenient measure 
of the deviation from the ideal pseudorotation 
description. 
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Abstract 

Several simple rules, Rano,4, Rano,5, Rano, 6 and Rano,7, 
have been derived on the basis of the mathematical 
and physical characteristics of anomalous dispersion 
experiments that permit the estimation of values for 
triplet phase invariants. They apply to two- 
wavelength experiments and concern a variety of 
values defined in terms of the real and imaginary 
corrections to atomic scattering factors. The rules 
apply to the case of a single type of predominant  
anomalous scatterer. The generalization to more than 
one type of predominant  anomalous scatterer is also 
described. Test examples show that large numbers of 
invariants may be evaluated by these means with 
reliabilities that, in certain circumstances, are at a 

potentially useful level, but the ultimate applicability 
depends, of course, on the reliability of the experi- 
mental data. The only information required besides 
the measurements of the diffraction intensities is the 
chemical composition of the anomalously scattering 
atoms. If there is more than one type of predominant  
anomalous scatterer, information concerning the rela- 
tive proportion of the different types is also required. 

Introduction 
In a previous article (Karle, 1984b), rules were presen- 
ted for selecting triplet phase invariants whose values 
are close to certain anticipated values. The rules arise 
from considerations of a mathematical and physical 
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